Entropy-Expansiveness and Domination for Surface Diffeomorphisms

نویسنده

  • José L. VIEITEZ
چکیده

Let f : M → M be a C-diffeomorphism, r ≥ 1, defined on a closed manifold M . We prove that if M is a surface and K ⊂ M is a compact invariant set such that TKM = E ⊕ F is a dominated splitting then f/K is entropy expansive. Moreover C generically in any dimension, isolated homoclinic classes H(p), p hyperbolic, are entropy expansive. Conversely, if there exists a C neighborhood U of a surface diffeomorphism f and a homoclinic class H(p), p hyperbolic, such that for every g ∈ U the continuation H(pg) of H(p) is entropy-expansive then there is a dominated splitting for f/H(p).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-expansiveness for Partially Hyperbolic Diffeomorphisms

We show that diffeomorphisms with a dominated splitting of the form Es⊕Ec⊕Eu, where Ec is a nonhyperbolic central bundle that splits in a dominated way into 1-dimensional subbundles, are entropy-expansive. In particular, they have a principal symbolic extension and equilibrium states.

متن کامل

Entropic Stability beyond Partial Hyperbolicity

We analyze a class of deformations of Anosov diffeomorphisms: these C-small, but C-macroscopic deformations break the topological conjugacy class but leave the high entropy dynamics unchanged. More precisely, there is a partial conjugacy between the deformation and the original Anosov system that identifies all invariant probability measures with entropy close to the maximum. We also establish ...

متن کامل

Robust Entropy Expansiveness Implies Generic Domination

Let f : M → M be a C r-diffeomorphism, r ≥ 1, defined on a compact boundaryless d-dimensional manifold M , d ≥ 2, and let H(p) be the homoclinic class associated to the hyperbolic periodic point p. We prove that if there exists a C 1 neighborhood U of f such that for every g ∈ U the continuation H(p g) of H(p) is entropy-expansive then there is a Df-invariant dominated splitting for H(p) of the...

متن کامل

Entropy-minimising models of surface diffeomorphisms relative to homoclinic and heteroclinic orbits

In the theory of surface diffeomorphisms relative to homoclinic and heteroclinic orbits, it is possible to compute a one-dimensional representative map for any irreducible isotopy class. The topological entropy of this graph representative is equal to the growth rate of the number of essential Nielsen classes of a given period, and hence is a lower bound for the topological entropy of the diffe...

متن کامل

Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits

The Nielsen-Thurston theory of surface diffeomorphisms shows that useful dynamical information can be obtained from a finite collection of periodic orbits. In this paper, we extend these results to homoclinic and heteroclinic orbits of saddle points. These orbits are most readily computed and studied as intersections of unstable and stable manifolds comprising homoclinic or heteroclinic tangles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014